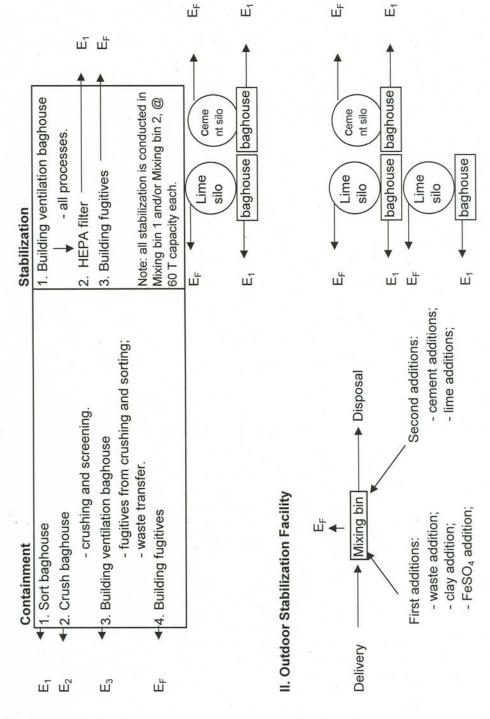
Appendix A

Emission Data

US ECOLOGY POTENTIAL TO EMIT

Emission point or description	Contributing processes		Emission rate (T/yr)	rate (T/yr)	
-		PM 10	Metals	Lead	TAP/HAP
I. CONTAINMENT AND STABILIZATION BUILDING	I. BLDG TOTAL:	0.8694	2.1299	0.1842	0.0005
A. Containment (debris handling)	A. Containment subtotal:	0.1422	0.6438	0.0557	0.0001
1. Stack emissions	1. Stack emissions total:	0.0471	0.2082	0.0180	0.0000
Sort floor stack	Sorting	0.0012	0.0057	0.0005	0.000
Crushing stack	Crushing & crushings screening	0.0416	0.1830	0.0158	0.0000
Building ventilation stack	Sorting, crushing, screening, waste transfer	0.0043	0.0196	0.0017	0.000
2. Fugitive emissions	3		111111111111111111111111111111111111111		
Fugitive emissions	All containment processes	0.0952	0.4356	0.0377	0.0001
B. Indoor stabilization 1. Stack emissions	B. Indoor stabilization subtotal:	0.7271	1.4861	0.1285	0.0003
Baghouse/HEPA stack	Waste handling & loadout, additive loading	0.0022	0.0044	0.0004	0.0000
Building fugitives	All stabilization processes	0.7250	1.4816	0.1281	0.0003
II. OUTDOOR STABILIZATION PROCESS	II. PROCESS TOTAL:	1.9376	2.4199	0.2093	0.0005
Mix bins	Waste transfer, additive loading, weighing	1.9376	2.4199	0.2093	0.0005
III. SILO FILLING/LOADING	III. SILO TOTAL:	4.3942	0.0000	0.0000	8.6466
1. Stack emissions					
Indoor stabilization silo		0.3225	0.000	0.0000	0.6346
Outdoor stabilization silo		0.3378	0.000	0.000	0.6646
2. Fugitive emissions					
All silos fugitives		3.7340	0.0000	0.0000	7.3475
IV. FACILITY TOTAL	IV. FACILITY TOTAL:	7.20	4.55	0.39	8.65
Total point/stack emissions		0.71	0.21	0.02	1.30
Total fugitive emissions		6.49	4.34	0.38	7.35

Notes:
TAP/HAP totals for silo filling represent 100% of emitted PM as Portland cement. Lime, the other silo TAP, would total 58.5% of the Portland cement totals, or 5.06 T/yr silo total (the lime is 58.8% CaO).


1. Metals weight fraction, as determined for the analysis, do not sum to 100%. The worse case weight percents represent a variety of materials and the highest sampled metals weight fraction. For this reason, the total metals emitted are calculated at a higher emission rate than the PM total.

FACILITY EMISSION POINTS

 E_i = point or stack emissions

E_F = fugitive emissions

1. Containment and Stabilization building

Appendix B

Modeling Review

MEMORANDUM

DATE:

12/20/04

TO:

Charlie Mazzone, Air Quality Division

THROUGH: Kevin Schilling, Air Quality Division

FROM:

Dustin Holloway, Air Quality Division

PROJECT NUMBER: T2-040020

SUBJECT:

Modeling Review for the US Ecology facility near Grandview, Facility ID No-073-00004

SUMMARY 1.

Washington Group International (WGI) conducted a full impact analysis for PM10 and lead emissions from the US Ecology of Idaho, Inc. (US Ecology) facility located near Grandview in support of a Tier II operating permit. The results of the analysis demonstrate, to DEQ's satisfaction, that the facility will not cause or contribute to a violation of any ambient air quality standards.

BACKGROUND INFORMATION 2.

Applicable Air Quality Impact Limits 2.1

US Ecology is located near Grandview in Owyhee county. Owyhee county is designated unclassifiable for all criteria air pollutants. The following table summarizes the applicable air quality standards for this area.

Pollutant	Averaging Period	Significant Contribution Levels (µg/m³)a,b	Regulatory Limit (µg/m³)°	Modeled Value Used ^d
	Annual	1	50 ^f	Maximum 1st highest8
PM ₁₀ ^e	24-hour	5	150 ^h	Maximum 6 th highest ¹ Highest 2 nd highest ¹
Lead	Quarterly	NA	1.5 ^k	

IDAPA 58.01,01.006.93

Modeling Memo - U. S. Ecology, Grandview

b Micrograms per cubic meter

LDAPA 58.01.01.577 for criteria pollutants, IDAPA 58.01.01.585 for non-carcinogenic toxic air pollutants IDAPA 58.01.01.586 for

carcinogenic toxic air pollutants.

The maximum 1th highest modeled value is always used for significant impact analysis and for all toxic air pollutants.

Particulate matter with an aerodynamic diameter less than or equal to a nominal ten micrometers

Never expected to be exceeded in any calendar year.

Concentration at any modeled receptor.

Never expected to be exceeded more than once in any calendar year.

Concentration at any modeled receptor when using five years of meteorological data

The highest 2nd high is considered to be conservative for five years of meteorological data.

Not be exceeded in any quarter of any calendar year.

2.2 Background Concentrations

This modeling analysis uses the default background concentrations for small town/suburban areas in DEQ's background concentration data. The following table summarizes the applicable background concentrations for this area.

Pollutant	Averaging Period	Background concentrations (µg/m³)*	
PM ₁₀	24-hour	73.0	
£14110	Annual	26.0	
Lead	quarterly	0.03	

3. ASSESSMENT OF SUBMITTED, CERTIFIED MODELING ANALYSIS

3.1 Modeling Methodology

Washington Group International (WGI) conducted a full impact analysis for PM₁₀ and lead in addition to a toxic pollutant analysis. DEQ did not review the toxic pollutant analysis because the provisions of IDAPA 58.01.01.210 and IDAPA 58.01.01.585-586 do not apply to Tier II Operating Permits.

Parameter	What Facility Submitted	DEQ's Review/Determination
Modeling protocol	No protocol was submitted	Although no protocol was submitted, the analysis adhered to established rules and guidelines.
Model Selection	ISCST3 version 02035	This model is the recommended model
Meteorological Data	Boise airport 1987-1991	This is the most representative data available for this area.
Model Options	Regulatory Defaults	Appropriate for this situation.
Land Use	Rural classification	Rural is the correct land use classification for this sparsely populated area.
Complex Terrain	Simple and complex terrain were analyzed.	There are some elevated receptors near the facility. These were accounted for.
Building Downwash	Downwash was included	ISCST3 accounts for downwash caused by nearby structures. However, ISCST3 does not calculate cavity concentrations. The sources and buildings at this facility are far enough away from the fenceline that the cavity regions do not affect ambient air.
Receptor Network	50 meter spacing along the fenceline; 50 meter spacing out to 200 meters; 100 meter spacing out to 500 meters; 200 meter spacing out to 1,000 meters; 500 meter spacing out to 5,000 meters	The receptor grid is sufficient for this analysis. If the ambient concentrations were close to the applicable standards, DEQ would recommend a finer grid spacing in the area of the maximum concentration. However, the estimated concentrations from this facility are far below any standards.
Facility Layout	N/A	The facility layout included the buildings identified on the plot plan which could affect pollution dispersion from the sources at the facility.

Hardy, Rick and Schilling, Kevin. Background Concentrations for Use in New Source Review Dispersion Modeling. Memorandum to Mary Anderson, March 14, 2003.

3.2 Emission Rates

The following table summarizes the emissions rates included in the modeling analysis.

Emission Release Point	Source Description	PM ₁₀ Emission Rate (lb/hr)	Lead Emission Rate (lb/hr)
Sort	Sort Floor Baghouse	2.72E-04	1.12E-04
Crush	Crusher Baghouse	9.50E-03	3.61E-03
General	General Building Ventilation Baghouse	9.78E-04	3.89E-04
Stab	Stabilization Baghouse	1.65E-04	2.91E-05
A_Silo	Additive Silo	7.36E-02	N/A
L_Silo	Lime Silo	7.36E-02	N/A
OSA	Stabilization Facility Additives	4.65E-01	N/A
O_Silo	Stabilization Facility Silos	1.45E-01	N/A
osw	Outdoor Stabilization Facility Waste Addition	1.32E-01	4.78E-02

3.3 Emission Release Parameters

Table 3.3 E	MISSION F	RELEASE P	ARAMETE	RS			
Emission Release Point	Easting (m)	Northing (m)	Elevation (m)	Stack Height (ft)	Temperature (°F)	Exit Velocity (m/s)	Stack Diameter (ft)
PM ₁₀ and I	Lead Point S	ources					
Sort	560,048	4,768,038	785.3	80	68	17.288	3.67
Crush	560,051	4,768,038	785.3	80	68	22.683	2.67
General	560,050	4,768,038	785.3	80	68	16.091	3.17
Stab	560,035	4,768,030	785.8	100	68	20.213	4.0
PM ₁₀ Point	Sources						
A SILO	559,998	4,768,017	787	60	68	0.002	2.76
L SILO	559,998	4,768,012	787.1	60	68	0.002	2.76
OSA	559,977	4,768,152	783.9	40	68	0.002	2.76
O SILO	559,977	4,768,152	783.9	40	68	0.002	2.76
PM ₁₀ and I	ead Volume	Sources		-	-		
	Easting (m)	Northing (m)	Elevation (m)	Release Height (m)	Horizontal Dimension (m)	Vertical Dimension (m)	
OSW	559,977	4,768,135	784.1	3.05	1.52	4.57	

For horizontal or capped stacks, the exit velocity should be set to 0.001 meters per second. The applicant used 0.002 meters per second (m/s). However, since the estimated concentrations are well below the standards, DEQ determined that 0.002 m/s was sufficient for this analysis.

3.4 Results of Full Impact Analysis

Table 3.4 I	FULL IMPACT	ANALYSIS RESULTS	3			
Pollutant	Averaging Period	Facility Ambient Impact (µg/m³)	Background Concentration (µg/m³)	Total Ambient concentration (µg/m³)	NAAQS (μg/m³)	Percent of NAAQS
PM ₁₀	24-HR	6,12ª	73.0	79.12	150	53%
L 14110	Annual	1.10 ^b	26.0	27.10	50	54%
Lead	Month	0.37°	0.03	0.40	1.5°	27%

^{* 6&}lt;sup>th</sup> highest modeled concentration out of five years of meteorological data.

The results of the analysis demonstrate, to DEQ's satisfaction, that the US Ecology facility will not cause or significantly contribute to a violation of any ambient air quality standards.

^b Highest modeled annual concentration out of five years of meteorological data.

The NAAQS standard for lead is based on a quarterly average. The ISCPrime output is a monthly average. This is more conservative than the quarterly standard.

Appendix C

AIRS Information

AIRS/AFS^a FACILITY-WIDE CLASSIFICATION^b DATA ENTRY FORM

Facility Name: US Ecology Idaho, Inc.

Facility Location: Grand View
AIRS Number: 073-00004

AIR PROGRAM POLLUTANT	SIP	PSD	NSPS (Part 60)	NESHAP (Part 61)	MACT (Part 63)	SM80	TITLE V	AREA CLASSIFICATION A-Attainment U-Unclassified N- Nonattainment
SO ₂	В							U
NO _x	В							U
СО	В							U
PM_{10}	В							U
PT (Particulate)	В							U
voc	В							U
THAP (Total HAPs)	В							U
_			APPL	ICABLE SUB	PART			
								_

^a Aerometric Information Retrieval System (AIRS) Facility Subsystem (AFS)

^b <u>AIRS/AFS Classification Codes</u>:

- A = Actual or potential emissions of a pollutant are above the applicable major source threshold. For HAPs only, class "A" is applied to each pollutant which is at or above the 10 T/yr threshold, **or** each pollutant that is below the 10 T/yr threshold, but contributes to a plant total in excess of 25 T/yr of all HAPs.
- SM = Potential emissions fall below applicable major source thresholds if and only if the source complies with federally enforceable regulations or limitations.
- B = Actual and potential emissions below all applicable major source thresholds.
- C = Class is unknown.
- ND = Major source thresholds are not defined (e.g., radionuclides).

Appendix D

Throughput Limitation Summary

PROCESS THROUGHPUT LIMITS SUMMARY

Process	Contributing Processes	Maximum Equipment Capacity	Throughput Limit
I. CONTAINMENT AND ST	ABILIZATION BUILDING		
A. Containment (debris ha	ndling) Sorting Crushing & crushings screening	100 T/hr 50 T/hr	876,000 T/yr 438,000 T/yr
B. Indoor stabilization	Waste stabilization	300 T/hr	2,628,000 T/yr
II. OUTDOOR STABILIZAT	Vaste stabilization	270 T/hr	2,365,200 T/yr
III. SILO FILLING/LOADIN	G ALL SILOS TOTAL:	100 T/hr	876,000 T/yr
	Indoor stabilization silos total Outdoor stabilization silos total	50 T/hr 50 T/hr	438,000 T/yr 438,000 T/yr

Appendix E

Allowable Contaminant Concentrations

Compound	CAS#	Concentration mg/kg
2-Chloro-1,3-butadiene	126-99-8	500
1,2-Dibromo-3-chloropropane	96-12-8	500
1,2-Dichlorobenzene	95-50-1	500
1,4-Dichlorobenzene	106-46-7	500
1,1-Dichloroethylene	75-35-4	500
1,2-Dichloroethane	107-06-2	500
1,1-Dichloroethane	75-34-3	500
2,4-D	94-75-7	500
(Dichlorophenoxyacetic Acid)	94-73-7	300
1,4-Dinitrobenzene	528-29-0	500
1, · Dimit conincin	99-65-0	- 500
	100-25-4	
1,4-Dioxane	123-91-1	500
1,2-Diphenylhydrazlne		
4,4-Methylene bis(2-	122-66-7	500
chloroaniline)	101-14-4	500
2,3,7,8-Tetrachlorodibenzo-p- dioxin *	1746-01-6	0.02
1,2,4-Trichlorobenzene	120-82-1	500
1,1,1-Trichloroethane	71-55-6	500
1,1,2-Trichloroethane	79-00-5	500
2,4,5-Trichlorophenol	95-95-4	500
2,4,6-Trichlorophenol	88-06-2	500
1,2,3-Trichloropropane	96-18-4	500
1,2,4-Trimethylbenzene	95-63-6	500
-,-,	25551-13-7	-
Acetone	67-64-1	500
Acetonitrile	75-05-8	500
Acrolein	107-02-8	
		500
Acrylamide	79-06-1	500
Aniline	62-53-3	500
Aramite	140-57-8	500
Aroclor (all PCBs)	1336-36-3	500
Benomyl	17804-35-2	500
Benzene	71-43-2	500
Bis (2-chloroethyl) ether	111-44-4	500
Bromoform	75-25-2	500
Captan	133-06-2	500
Carbaryl	63-25-2	500
Carbofuran	1563-66-2	500
Carbon Disulfide	75-15-0	500
Carbon Tetrachloride	56-23-5	500
Chlordane	57-74-9	500
Chlorobenzene	108-90-7	500
Chlorobenzilate	510-15-6	500
Chloroform	67-66-3	500
Chloromethane	74-87-3	500
Creosol	1319-77-3	500
Creosote	8001-58-9	500
Cyclohexanone	108-94-1	500
DDT	50-29-3	500
DEHP (Di(2-Ethylhexyl) Phthalate)	117-81-7	500
Diazinon	333-41-5	500
Dibutyl Phthalate	84-74-2	500
Dichloromethane	75-09-2	500
Dieldrin	60-57-1	500
Diethanolamine	111-42-2	500
Dictilationalitie	111-42-2	300

Compound	CAS#	Concentration mg/kg 500	
Dimethyl aminoazo-benzene	60-11-7		
Dinitro-o-cresol	534-52-1	500	
Dioxin and furans *	NA	500	
Diphenylamine	122-39-4	500	
Endosulfan	115-29-7	500	
Endrin	72-20-8	.500	
Epichlorohydrin	106-89-8	500	
Ethyl acetate	141-78-6	500	
Ethyl ether	60-29-7	500	
Ethylbenzene	100-41-4	500	
Ethylene Glycol	107-21-1	500	
Formaldehyde	50-00-0	500	
Heptachlor	76-44-8	500	
Heptachlor epoxide	1024-57-3	500	
Hexachlorobenzene	118-74-1	500	
Hexachlorobutadiene	87-68-3	500	
Hexachlorocyclopentadiene	77-47-4	500	
Hexachloroethane	67-72-1	500	
Isobutyl alcohol	78-83-1	500	
Isopropyl Alcohol	67-63-0	500	
Lindane	58-89-9	500	
Malathion	121-75-5	500	
Methanol	67-56-1	500	
Methoxychlor	72-43-5	500	
Methyl Ethyl Ketone	78-93-3	500	
Methyl Isobutyl Ketone	108-10-1	500	
Methyl methacrylate	80-62-6		
		500	
Methyl parathion	298-00-0	500	
Methylacrylonitrile	126-98-7	500	
Naphthalene	91-20-3	500	
n-Butyl Alcohol	71-36-3	500	
n-Dioctyl phthalate	117-84-0	500	
p-Nitroaniline	100-01-6	500	
Nitrobenzene	98-95-3	500	
n-Nitrosodi-n-butylamine	924-16-3	500	
n-Nitrosodiethylamine	55-18-5	500	
n-Nitrosodimethylamine	62-75-9	500	
Parathion	56-38-2	500	
Pentachloronitrobenzene	82-68-8	500	
Pentachlorophenol	87-76-5	500	
Phenol	108-95-2	500	
Phorate	298-02-2	500	
Phthalic anhydride	85-44-9	500	
Picloram	1918-02-1	500	
Polycylic Organic Matter **	NA	500	
Promanide	23950-58-5	500	
Sec-Butyl Alcohol	78-92-2	500	
Styrene	100-42-5	500	
Tetrachloroethylene	27-18-4	500	
Thiram	137-26-8	500	
Toluene	108-88-3	500	
Toluene Diisocyanate	26471-62-5	500	
Toxaphene	8001-35-2	500	
Trichloroethylene	79-01-6	500	
Triethylamine	121-44-8	500	
Trifluralin	1582-09-8	500	
Trimethyl benzene	25551-13-7	500	
Vinyl Acetate	108-05-4	500	
Vinyl Chloride	75-01-4	500	
Xylene (o,m,p isomers)	1330-20-7	500	
Total Volatile Organic	NA	500	

TAP	CAS#	Substance Concentration Weight Fraction
Aluminum	7429-90-5	0.27
Antimony	7440-36-0	0.13
Arsenic	7440-38-2	0.0097
Asbestos	1332-21-4	1.00E-08
Barium	7440-39-3	0.13
Beryllium	7440-41-7	8.00E-05
Cadmium	7440-43-9	0.023
Chromium	7440-47-3	0.13
Copper	7440-50-8	0.27
Cyanides	592-01-8	0.27
Lead	7440-47-3	0.195
Manganese	7439-96-5	0.27
Mercury	7439-97-6	0.004
Nickel	7439-92-1	0.175
Selenium	7782-49-2	0.05
Silver	7440-22-4	0.004
Thallium	7440-28-0	0.028
Vanadium	1314-62-1	0.012
Zinc	7440-66-6	0.284